ON DOUBLE WEIGHTED MEAN STATISTICAL CONVERGENCE

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

weighted statistical convergence

in this paper, the notion of n, pn - summability to generalize the concept of statisticalconvergence is used. we call this new method weighted statistically convergence. we also establish itsrelationship with statistical convergence, c,1-summability and strong   n n, p -summability.

متن کامل

On I-statistical Convergence

In the present paper, we investigate the notion of I -statistical convergence and introduce I -st limit points and I -st cluster points of real number sequence and also studied some of its basic properties.

متن کامل

Wijsman Statistical Convergence of Double Sequences of Sets

In this paper, we study the concepts of Wijsman statistical convergence, Hausdorff statistical convergence and  Wijsman statistical Cauchy double sequences of sets and investigate the relationship between them.

متن کامل

On Weighted Mean Convergence of Lagrange Interpolation for General Arrays

For n 1, let fxjngnj=1 be n distinct points and let Ln[ ] denote the corresponding Lagrange Interpolation operator. Let W : R ! [0;1). What conditions on the array fxjng1 j n; n 1 ensure the existence of p > 0 such that lim n!1 k (f Ln[f ])W b kLp(R)= 0 for every continuous f : R ! Rwith suitably restricted growth, and some “weighting factor” ? We obtain a necessary and su¢ cient condition for ...

متن کامل

On The Mean Convergence of Biharmonic Functions

Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Research -GRANTHAALAYAH

سال: 2017

ISSN: 2350-0530,2394-3629

DOI: 10.29121/granthaalayah.v5.i2.2017.1739